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Abstract
Globular protein solutions of lysozyme in water and added salt are
modelled according to the Derjaguin–Landau–Verwey–Overbeek (DLVO)
theory, in order to determine their fluid–fluid and fluid–solid coexistence
lines. Calculations are based on both computer simulations and theoretical
approaches. Our results indicate that, when the potential parameters are
obtained by fitting physical properties directly deducible from either static
or dynamic light scattering data, the fluid–fluid phase coexistence predictions
agree quite well with the experiments. Our description of the solid phase allows
only a qualitative reproduction of the experimental solubility boundaries. The
overall accuracy of our predictions is discussed in view of the well known
limitations of the DLVO representation of protein solutions.

Current interest in simple models of protein solutions is mainly related to the possibility
of successfully predicting the most favourable conditions for protein crystallization [1], a
process whose control is of crucial importance for the determination of protein structure.
Experimental results actually suggest that the best conditions for crystal growth from the
solutions are met when the fluid–fluid coexistence—which for such systems consists in the
equilibrium between a protein-rich and a protein-poor phase—becomes metastable with respect
to the solid–fluid equilibrium, the critical point falling just beneath the solubility line [2–4].
A number of experimental observations also show that protein crystallization usually occurs
in a narrow interval of small negative values of the second virial coefficient B2 [5], termed
the ‘crystallization slot’. This evidence, interpreted in terms of an effective short-range pair
interaction between the macromolecules [3], and the further assumption of uniformly charged
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protein surfaces, have prompted several authors to the application of the Derjaguin–Landau–
Verwey–Overbeek (DLVO, [6]) and other theories of colloids to protein solutions [7–10].

The metastability of the fluid–fluid with respect to the fluid–solid coexistence characterizes
the phase diagram of a wide class of short-range pair potentials [11], for instance the hard-
core Yukawa [12], the adhesive hard-sphere [3, 4, 13] and the 2n − n Lennard-Jones type
potentials [14], or the α-Lennard-Jones potential used in the description of protein–protein
interactions in [2].

The DLVO potential belongs to the same class of force laws, given a sufficiently high
ionic strength of the solution (typically greater than 0.2 M). We recall that the analytical form
of the DLVO potential is written as the sum of a short-range attractive van der Waals term,

vHA(r) = − AH
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and a Coulomb, Debye–Hückel-like contribution,
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r
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Here σ is the hard-sphere diameter, AH is the Hamaker constant, Q = zpe is the net charge
on the particle in electron units, εr and ε0 are the (solution) relative and the vacuum dielectric
constants, respectively, and χDH is the inverse Debye screening length, related to the solution
ionic strength Is by the following expression [15]:

χDH = [4π Lb1000NA Is]1/2, (3)

where Lb = e2/(2πε0εrkBT ) is the Bjerrum length, kB is the Boltzmann constant and NA is
the Avogadro number. A cut-off value δ, typically envisioned as the thickness of the Stern
layer, is introduced in order to circumvent the singularity of the van der Waals contribution to
the potential (1) [9, 16]. With these notations, the DLVO potential is written as

vDLVO(r) =
{

∞ r < σ + δ

vHA(r) + vDH(r) r � σ + δ.
(4)

In the low-ionic-strength regime, the electrostatic repulsive contribution prevails over the
attractive term beyond a certain distance, in such a way that vDLVO(r) exhibits, after an initial
negative region, a positive bump asymptotically decaying to zero (the well known DLVO
potential barrier). In figure 1 we show instead the different shape that vDLVO(r) assumes
for several specific sets of potential parameters, suited to describe solutions characterized
by a relatively high ionic strength. These parameters (reported in table 1 along with the
corresponding salt molarities to be investigated in this work) have been determined by Muschol
and Rosenberger [9] and Beretta and co-workers [17], in order to rationalize static and dynamic
light scattering experiments on lysozyme in water–NaCl or water–(NH4)2SO4 solutions. These
authors calculated, in particular, the slope of the scattered intensity data kS and of the collective
diffusion coefficient kD, as a function of the solution ionic strength Is, and on such a basis
described the protein interaction through a DLVO representation. The experimental data and
the theoretical curves obtained in [9] and [17] are reproduced in figure 2; it appears that
different molar ranges have been encompassed in the two experiments, and that the DLVO
performances are semiquantitative in the low-molarity NaCl-added solution and qualitative for
the high-ionic-strength (NH4)2SO4-added solutions. It is worth observing that the Hamaker
constant, the protein charge and the Stern layer thickness, that have been used as adjustable
parameters, do actually fall in a range commonly accepted on the basis of much experimental
evidence [9, 17].
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Figure 1. Left: DLVO models A, B1 and B2 of table 1 (from top to bottom). Right: potential
patterns for sets B3 and C (from top to bottom). Insets show a magnification of the region
immediately outside the hard core. The energy and length units are reported in table 1.

Is [M]

–30

–20

–10

0

KD

0 0.1 0.2 0.3 0.4 0.5
–20

0

20

40

60

80

KS

a

b

0 1 2 3 4 5

Figure 2. Top: slope of the scattered intensity data kS versus the ionic strength in water + NaCl
solutions of lysozyme. Circles, experimental points; curve, overall DLVO best fit (set A in
table 1) [9]. Bottom: slope of the collective diffusion coefficient, kD, in water + (NH4)2SO4
lysozyme. Circles, experimental points; full curve, DLVO fit of kD at Is = 1.2 M (sets B); dashed
curve, overall DLVO best fit (set C) [17].

In order to assess the performances of a DLVO approach in predicting the fluid–fluid
and fluid–solid equilibria in real globular protein solutions, we shall compare in the following
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Table 1. Parameters of the DLVO model of equation (4) investigated in this work. The Hamaker
constant AH is given in kBT units at T = 293 K, the protein charge Q in electron units and the
thickness of the Stern layer δ in nm; the protein diameter is σ = 3.6 nm. AH, Q and δ for set A
are taken from [9], those for sets B and C from [17]. The three salt molarities Is in the last column
correspond to the experimental conditions investigated in [10].

Model AH Q δ Is

A 8.1 10.7 0.180 0.51
B1 8.0 10.0 0.164 0.51
B2 8.0 10.0 0.164 0.85
B3 8.0 10.0 0.164 1.20
C 8.0 10.0 0.150 1.20

theoretical and simulation results based on the parameters of table 1, with the experimental
phase diagrams for solutions of lysozyme in water and NaCl at 0.51, 0.85 and 1.2 M ionic
strength, determined in another work of Muschol and Rosenberger [10]. These authors
investigated in detail, through light scattering intensity measurements, the demixing conditions
of the solution in protein-rich and a protein-poor phases and, by comparing with the solubility
lines calculated by others [18, 19], found that the fluid–fluid separation is always metastable
with respect to the fluid–solid coexistence. The parameters of the DLVO model reported in
table 1 have been associated with the different molarities according to the following procedure.

• Model A. For the 0.51 M fluid–fluid phase separation, we retain the values of AH, Q and
δ used in [9] to best fit the experimental kS versus Is up to 0.427 M of added NaCl (see
the top panel of figure 2). We are in fact not aware of other kS determinations for higher
NaCl molarities.

• Models B. Forced by the lack of experimental data for the high-NaCl-molarity solutions,
and in the spirit of an ample investigation of the phase diagram for the three regimes
envisaged in [10], we resort to the [AH, Q, δ] set determined in [17] to fit kD at 1.2 M in
(NH4)2SO4-added solution (see figure 2, bottom panel).

• Model C. The [AH, Q, δ] set that corresponds to the overall best fit of kD versus Is shown
in the bottom panel of figure 2 [17] has been used to calculate the fluid–fluid coexistence
for the 1.2 M NaCl solution.

We always fix the protein diameter σ = 3.6 nm.
Phase equilibria for models A–C of table 1 have been determined according to different

methods. In particular, the fluid–fluid phase boundaries have been studied through a Gibbs
ensemble Monte Carlo (GEMC, [20]) approach. We have performed 100 000 standard GEMC
steps at each temperature considered, on samples composed of N = 512–1024 particles, in
order to equilibrate the system, followed by five to ten cumulation runs of the same length.
Depending on the temperature, 1000–7000 trials to swap particles between the two boxes have
been attempted.

As far as the solid–fluid equilibrium is concerned, the free energy of the fluid phase has
been calculated in the framework of the hybrid mean-spherical approximation [21, 22], by
integrating the equation of state from zero up to high densities along isothermal paths. On
the solid side, we have determined the free energy through a standard first-order perturbation
theory [23], based on a reference solid of hard spheres, whose equation of state and structural
functions are known from previous studies [24].

Results for the phase diagrams are shown in figures 3–5. We observe that the critical
density and temperature of the fluid–fluid equilibrium are fairly well predicted for all the ionic
strengths investigated, with discrepancies from the experimental values that never exceed a



DLVO model of globular proteins 379

0 100 200 300 400 500 600
ρ [g/l]

250

300

350

400

450

500

T
 [K

]

 Is = 0.51 M

Figure 3. Phase diagram of a lysozyme in water–NaCl solution at Is = 0.51 M. Circles,
experimental fluid–fluid coexistence [10]; full curve, experimental solubility boundary of the
tetragonal solid phase [10, 18, 19]. Dotted curves with error bars, GEMC fluid–fluid equilibria
for the DLVO model A (lower line) and B1 (upper line) of table 1; full diamonds indicate the
critical points. Triangles, theoretical free energy determination of the solid–fluid coexistence for
model B1.

few per cent. Significantly, the two sets of DLVO parameters employed at 0.51 M, i.e. A and
B1 of table 1, lead to phase diagrams which bracket the experimental curve; it thus appears
that a more accurate, or even quantitative, reproduction of the experimental curve might be
achievable, should an assessed strategy for fixing AH, Q and δ be devised. The sensitivity
of the phase diagram to a fine tuning of the parameters is also evident at 1.2 M, as shown
in figure 5, where the difference between the exact (set B3) and the approximate (set C) fit
to the experimental kD (see figure 2(b)) evidently emerges. The effect of varying the Stern
layer thickness appears in this context particularly appreciable as already observed in [17]. We
recall that this quantity can be related to the intrinsic size of counterions, which condense on
the macromolecule surface, and can reasonably attain values of the order of 0.2 nm.

All the ‘liquid–vapour’ coexistence lines appear metastable with respect to the theoretically
determined solid–fluid phase boundaries, in agreement with the experimental evidence. The
connection between the second virial coefficient as an indicator for protein crystallization [5],
and the presence of a metastable fluid–fluid separation in protein solution, led several authors
to investigate the relation between the critical temperature Tc and B2 (see e.g. [25, 26] and
references cited therein). Vliegenthart and Lekkerkerker [25] pointed out, in particular, that the
second virial coefficient for several simple model fluids attains a fairly constant value around
the critical temperature, namely B∗

2 ≡ B2(Tc)/v0 � −6, where v0 is the volume of the particle.
A similar analysis for the DLVO models envisaged in this study is reported in figure 6, where
the behaviour of B2 as a function of the temperature is shown. An average value with a small
dispersion, B∗

2 � (−5.02 ± 0.06) occurs for such systems, in fair agreement with the range
B∗

2 = [−5.45 to − 8.85] determined in [25]. We observe that the value B∗
2 � −5.1, obtained

for set A (see figure 6), that best fits the lysozyme in water–NaCl solution at 0.51 M [9],
closely corresponds to the experimental outcome B2 = −5.3 v0 ≡ −2.8 × 10−4 mol cm3 g−2



380 G Pellicane et al

0 100 200 300 400 500 600
ρ [g/l]

280

330

380

430

480

530

T
 [K

]

 Is = 0.85 M

Figure 4. Phase diagram for a lysozyme in water–NaCl solution at Is = 0.85 M. Circles,
experimental fluid–fluid coexistence [10]; full and dashed curves, experimental solubility boundary
for the tetragonal and orthorhombic solid phases, respectively [10, 19]. Dotted curve with error
bars, GEMC fluid–fluid coexistence for DLVO model B2 of table 1; the full diamond indicates the
critical point. Triangles, solid–fluid coexistence for model B2.

obtained in [5] for the same solution, around the crystallization slot, at the slightly lower 0.34 M
ionic strength. Moreover, models B1–B3 tend to overestimate the critical temperature of the
real solutions, as visible in figures 3–5; interestingly, however, the application of the criterion
B∗

2 � −6 would produce in these cases critical temperatures fairly close to the experimental
ones (see figure 5).

No experimental data for the solid branch line at high density, to compare our predictions to,
are currently available. As far as the fluid branch is concerned, the experimental solubility lines
correspond to coexisting solid phases with either tetragonal or orthorhombic symmetry [18, 19],
whilst our perturbation approach for the solid phase is based on a inherent FCC hard-
sphere structure. This can explain the apparent discrepancy between our predictions and the
experimental results, especially as far as the tetragonal line is concerned (see figures 3–5). We
observe however that, at variance with the FCC lattice, where each particle is in close contact
with 12 neighbours, in a tetragonal lysozyme crystal each protein has strong interactions with
four neighbouring molecules [27]; the orthorhombic structure is also characterized by a number
of contacts smaller than that of a compact FCC arrangement. Since the potential energy per
particle in the crystalline phase at low temperature is given by the value of the pair potential
at minimum separation times half the number of nearest neighbours, we expect, in passing
from an FCC to a tetragonal or orthorhombic structure, a substantial decrease of the absolute
value of the internal energy. Although we cannot predict the quantitative relevance of such a
reduction, the general trend of the fluid–solid equilibrium can be surmised from a theoretical
investigation carried out in [28], where it is shown that even a tiny decrease of the number of
contacts per particle drastically lowers and flattens the sublimation line in a square-well fluid.
The same conclusion has been obtained in the simulation study of [12] on a Yukawa model
with variable attractive range. On such a basis we can confidently forecast a contraction of the
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Figure 5. Phase diagram for a lysozyme in water–NaCl solution at Is = 1.2 M. Circles,
experimental fluid–fluid coexistence [10]; full and dashed curves, experimental solubility boundary
for the tetragonal and orthorhombic solid phase, respectively [10, 19]. Dotted curves with error
bars, GEMC fluid–fluid equilibria for DLVO model B3 (lower curve) and C (upper curve) of table 1;
diamonds, critical points. Triangles, solid–fluid coexistence for model B3.

Figure 6. Behaviour of the second virial cofficient B2 as a function of the temperature for models
A, B1, B2, B3 and C of table 1 (from top to bottom). The markers indicate the critical values of
each model. The value B2/v0 = −6 deduced in [25] is also shown (dashed line).
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temperature gap between the solubility line and the critical temperature, and hence a closer
agreement with the experimental findings, should the correct crystal symmetry be taken into
account in our analysis.

As far as a general discussion of the models here employed in order to investigate
real globular protein solutions is concerned, we recall that we have used in a number of
cases parameters appropriate to fit kD in ammonium sulfate solutions, whilst comparing
with experimental phase diagrams for NaCl solutions [10]. More generally, other serious
limitations are intrinsic to a one-component fluid representation, since this latter cannot take
into account the large variability of solution conditions such as related, for instance, to cation
and anion identity, salt concentration, salt bridges, hydrogen bonding, hydrophobic effects
etc [8–10, 15, 29, 30]. Also, a spherically symmetric representation of the interactions
cannot describe the surface topology (whose influence seems relevant for the occurrence of
a metastable liquid–liquid immiscibility region [27]), as well as the microscopic mechanisms
underlying molecular recognition phenomena [31]. The applicability of the DLVO model in
the context of biological systems, in particular, has been recently questioned [32, 33].

Some insight into the overall limitations involved in a monodisperse, short-range
description of real protein solutions can be gained from several recent investigations that
account for the shape anisotropy of the protein [31, 34], or include several ‘sticky’ sites at the
surface of the protein [35, 36]. In particular, the behaviour of the second virial coefficient B2 in
a model where the discrete nature of the solvent and of the charge distribution on the molecular
surface are explicitly taken into account has been considered in [36]. It is shown that, for such a
model, B2 has a non-monotonic dependence on the added salt concentration, in agreement with
various experimental findings on protein solutions (see [36] and references quoted therein).
This feature in the B2 trend disappears if a smeared charge distribution on the molecular surface
is assumed; the DLVO model, based on a spherically symmetric representation of interactions,
is similarly unable to reproduce a non-monotonic B2 behaviour.

A second investigation [37] concerns the kinetics of crystallization of the α-Lennard-Jones
fluid, a model introduced to investigate the phase behaviour of protein solutions [2], that is
characterized (as is the DLVO potential) by a short-range attractive interaction. In this model
the early germination of the solid phase takes place when the system approaches and eventually
crosses the metastable binodal line, a result in positive agreement with the experimental
observations of [9]. However, the elapsed time for the onset of crystallization is still orders of
magnitude lower than that observed in a typical protein solution (hours or days); this result is
in qualitative agreement with the observation that the rate of crystallization of moderate ionic
strength protein solutions modelled through the DLVO potential is unrealistically high [29].

Despite the intrinsic limitations mentioned above, the success of the DLVO model in
reproducing the phase diagram of real protein solutions seems of valuable interest. We argue
that the basic mechanisms governing the phase equilibrium in such systems are reasonably
well captured by the DLVO representation, in agreement with previous studies on the overall
shape of the phase diagram in short-range potential fluids [2–4, 11–13, 32]. Moreover, our
investigation shows that the accuracy of the DLVO applications can be brought to even higher
standards, provided that the potential parameters are properly chosen. It seems, for this purpose,
that the fit of kS or kD versus ionic strength data is a good strategy, that however certainly calls
for further optimization. To this end more extensive results from light scattering experiments,
in solutions with various added salts and over wide molarity ranges, would be valuable.

Extensions of this study, in order to assess the theoretical determination of the solubility
lines on the basis of ‘exact’ computer simulations, are in progress. More extensive
investigations of the kinetics of crystallization at higher densities than those envisaged in [37]
would also be desirable. It has been recently shown, in fact, that in two different short-range
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potential systems one can identify a glass (or possibly gelation) line at relatively high density,
falling inside the solid–fluid equilibrium boundaries [38]. The kinetics of cluster aggregation
is in general altered in the neighbourhood of such a line; should this latter effectively exist for
the α-Lennard-Jones potential, and also for the DLVO model, one could reasonably expect a
substantial reduction of the crystallization rate.
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